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Abstract

We present an efficient second-order accurate scheme to treat stiff source terms within the framework of higher order
Godunov’s methods. We employ Duhamel’s formula to devise a modified predictor step which accounts for the effects of
stiff source terms on the conservative fluxes and recovers the correct isothermal behavior in the limit of an infinite cooling/
reaction rate. Source term effects on the conservative quantities are fully accounted for by means of a one-step, second-
order accurate semi-implicit corrector scheme based on the deferred correction method of Dutt et al. We demonstrate
the accurate, stable and convergent results of the proposed method through a set of benchmark problems for a variety
of stiffness conditions and source types.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

We wish to solve the following system of partial differential equations describing a hydrodynamic flow with
a stiff (energy) source term
0021-9
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d¼1

oF dðUÞ
oxd

¼ SðUÞ; ð1Þ
where D is the dimensionality of the problem, U, F(U), S(U) are the conservative variables, the conservative
fluxes and the source term respectively, given by
991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

1016/j.jcp.2006.10.008

rresponding author. Tel.: +41 44 633 6495; fax: +41 44 633 1238.
ail address: fm@phys.ethz.ch (F. Miniati).

mailto:fm@phys.ethz.ch


520 F. Miniati, P. Colella / Journal of Computational Physics 224 (2007) 519–538
U ¼

q
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; F dðUÞ ¼

qud

qu1ud þ pd1d

..

.

quDud þ pdDd

ðqE þ pÞud

0BBBBBBB@

1CCCCCCCA
; SðUÞ ¼

0

0

..

.

0

qKðe; qÞ

0BBBBBB@

1CCCCCCA: ð2Þ
In the above equations, q is the density, ud the velocity in the d direction, E ¼ eþ
PD

d¼1u2
d=2 is the total specific

energy with, e, the specific internal energy. K(e,q) is the term describing the source of specific internal energy.
In the following we consider the case of a stiff source term corresponding to an endothermic process, such

as occurs in radiative losses. In addition, we restrict our analysis to source types that, at least near equilibrium,
behave as a relaxation law. In the stiff case, the characteristic relaxation time scale for S may be much smaller
than the CFL time step for the hydrodynamic waves. For that reason, we would like to use a semi-implicit
method, treating the stiff source term implicitly, while using an explicit method for the hyperbolic terms. How-
ever, the classical analysis of such fast endothermic processes shows that, in the limit as the relaxation time
goes to zero, the gas can be described by the compressible flow equations with an isothermal equation of state
[18]. Pember [14] showed that the use of formally second-order accurate semi-implicit methods such as Strang
splitting, or a second-order Godunov predictor–corrector method could lead to a substantial loss of accuracy,
due to inconsistencies between the characteristic tracing step without sources and the effective limiting isother-
mal behavior. Such inconsistencies between the flux calculation with the limiting isothermal equation of state
can lead to dramatic errors particularly at sonic points. Pember proposed various approaches to the problem
based on classical relaxation theory. Roe and Hittinger [15] also addressed the issues raised here in relation to
Godunov’s method with stiff relaxation. In their approach they split the equations based on a splitting of state
space into stiff and non-stiff subspaces of the linearized source term to obtain in the stiff limit formulations
similar to ours. However, neither Pember nor Roe and Hittinger did present a complete method that is sec-
ond-order accurate in both the stiff and non-stiff limits, nor did they discuss the extension to more than
one dimension.

The problem of hyperbolic system with stiff relaxation has also been considered by other authors in the past
mostly for one-dimensional systems and within the framework of Runge–Kutta based methods of lines. In
particular Jin [7] designed second-order Runge–Kutta type splitting methods with the correct asymptotic limit.
Jin and Levermore’s [8] developed a semi-discrete high resolution method which, in order to ensure the correct
asymptotic behavior, employs a linear combination of the conservative fluxes for the homogeneous (i.e. with-
out the relaxation term) and equilibrium system. The fluxes are computed with a higher order Godunov’s
method and the scheme allows for a rapid transition between the stiff and non-stiff regimes. As the authors
point out, however, the upwind property of the scheme is not strictly guaranteed for all stiffness conditions.
Finally, Caflisch et al. [2] developed a scheme for hyperbolic systems with relaxation that is uniformly accurate
for various ranges of stiffness conditions (see also Refs. [9,13]).

The aim of this paper is to build a higher order Godunov’s method that preserves the properties of robust-
ness and accuracy across a variety of stiffness conditions thus avoiding the problems described in [14]. In par-
ticular, in order to preserve higher order accuracy, we aim for a semi-implicit method that corresponds to a
standard second-order Godunov method of the appropriate hyperbolic problem for the stiff or non-stiff limits.
To this end, we use second-order accurate deferred corrections method of a type presented in [5], to obtain a
semi-implicit corrector that is a special case of the algorithms described in [12], although any implicit L-stable
second-order one-step method would be acceptable. The main new idea in our work is contained in our treat-
ment of the predictor step for computing the hyperbolic fluxes, based on the derivation of a local effective
dynamics using Duhamel’s formula. This leads to an explicit predictor step that corresponds to that for a con-
ventional second-order Godunov method for Eq. (1) in the limit where the relaxation time is comparable to or
greater than the hydrodynamic CFL time step; and to a second-order Godunov method for the isothermal
equations in the limit where the relaxation time is much smaller than the hydrodynamic time step. Our
approach is similar to that used in [17] for obtaining a well-behaved numerical method for incompressible vis-
coelastic flows in both the viscous and elastic limits; however, the details there are quite different than those for
the present setting.
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The paper is organized as follows. In Section 2 we describe a second-order accurate, semi-implicit corrector
method based on the deferred corrections ideas presented in [5,12] to be used for the final source term update.
In Section 3, based on Duhamel’s formula, we work out a modified formulation of Godunov’s predictor step
and flux calculation suitable for the case of stiff source terms. In Section 4 we discuss stability issues for our
approach and Section 5 contains the extension of the method to the case in which the source term depends
both on the gas density as well as the internal energy. In Section 6 we test the performance of the code
and demonstrate the accuracy of the method in various stiffness conditions. The paper concludes with Section
7 where the main results of the paper are summarized.

2. Semi-implicit predictor–corrector

Our time-discretization for the source terms is a single-step, second-order accurate scheme based on the
deferred correction ideas in Dutt et al. [5]. Given the system of Eqs. (1)
oU
ot
¼ �r � F þ SðUÞ; ð3Þ
we aim for a scheme in which an explicit approach is retained for the non-stiff conservative hydrodynamic
term, $ Æ F and a implicit method is employed for the stiff part of the equation, S. The particular approach
is a special case of a more general class of semi-implicit methods by Minion [12].

Consider the first-order system of ordinary differential equations (ODEs)
dY
dt
¼ Cðt; Y Þ; ð4Þ

Y ðt ¼ 0Þ ¼ Y 0; ð5Þ
with Y 2 Rn, C : R� Rn ! Rn. In [5], Eq. (4) is reformulated in terms of its equivalent Picard integral equa-
tion, to which a deferred corrections algorithm is iteratively applied. First an error is estimated according to
~�ðtÞ ¼ Y 0 þ
Z t

0

C½s; ~Y ðsÞ�ds� eY ðtÞ; 0 6 t 6 Dt; ð6Þ
where, eY ðtÞ, is an initial guess to the solution to be corrected iteratively. Then a correction is computed by
solving the error equation for the correction dðtÞ � Y ðtÞ � eY ðtÞ :
dðtÞ ¼
Z t

0

fC½s; eY ðsÞ þ dðsÞ � C½s; eY ðsÞ�gdsþ ~�ðtÞ;

Y ðtÞ ¼ eY ðtÞ þ dðtÞ; 0 6 t 6 Dt:

ð7Þ
To complete the specification of the method, we need to choose a quadrature scheme to replace the integrals
in time by sums over a finite number of points. The choice of quadrature method in the error calculation (6)
and of the number of iterations determines the accuracy of the method. However, as noted in [5], the rate of
convergence of the method is independent of the accuracy of the quadrature rule used in the correction cal-
culation (7). In particular, for stiff systems, one uses a quadrature rule corresponding to backward Euler,
replacing the integrand by its linear approximation. In the present case, we are only interested in second-order
accuracy, so we can use the trapezoidal rule for the quadrature rule in the error calculation and iterate only
once.

Our semi-implicit method will correspond to solving a collection of ODEs, one at each grid point
dU
dt
¼ SðUÞ � ðr �~F Þnþ

1
2; ð8Þ
where we view the time-centered flux divergence as a constant source, whose computation using a modified
Godunov method is described below. Following [12], we solve the resulting collection of ODEs using the
method described above. For our initial guess, we use
eU ¼ U 0 þ ðI� DtrU SjU0

Þ�1 SðU 0Þ � ðr � F Þnþ
1
2

h i
Dt; ð9Þ
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where U0 ” U(t0). In the above expression we have used backward Euler to estimate the effects of the source
term and we have then Taylor expanded the implicit part of it into a linear form. This yields a second-order
accurate estimate in the sense that: eU � Uðt0 þ DtÞ ¼ OðDt2Þ. Based on Eq. (6) the error is then estimated as
~�ðDtÞ ¼ U 0 þ
Dt
2
½Sð eU Þ þ SðU 0Þ� � Dtðr � F Þnþ

1
2 � eU ; ð10Þ
where we have used the trapezoidal rule to estimate the integral of the source term. The sought correction is
obtained in implicit form by applying backward Euler to the integral in the correction equation (7)
dðDtÞ ¼ ðI� DtrU SjeU Þ�1~�ðDtÞ; ð11Þ

Uðt0 þ DtÞ ¼ eU þ dðDtÞ: ð12Þ
From Eqs. (10) and (11) it is clear that the final solution will have a truncation error O(Dt2) and global second-
order accuracy in time.

Clearly in the non-stiff limit, as the contribution from the term ‘Dt$USjU’ becomes negligible compared to
those from ‘I’, the above scheme reduces to the usual second-order accurate explicit formulation
Uðt0 þ DtÞ ¼ U 0 � Dtðr � F Þnþ
1
2 þ Dt

2
½Sð eU Þ þ SðU 0Þ�: ð13Þ
3. Effective dynamics and a modified Godunov’s method

In order to compute the flux divergence ðr �~F Þnþ
1
2, we use the quasilinear form of the equations in primitive

variables to extrapolate from cell centers to cell faces
oW
ot
þ
XD

d¼1

Ad
oW
oxd
¼ SðW ÞðW Þ;

SðW Þ ¼ rU WSðUÞ:
In order to develop our formulation we will start using W = (q,u,e)T, but will switch to the usual set of prim-
itive variables later in Section 3.1.1. Hereafter, we will denote S(W) ” S, dropping the superscript. We can also
give the evolution along the Lagrangian trajectories
DW
Dt
þ
XD

d¼1

AL
d

oW
oxd
¼ SðW Þ;

AL
d ¼ Ad � udI;

DW
Dt
¼ oW

ot
þ ðu � rÞW :
We will derive from the quasilinear form of the equations a new system that includes, at least locally in time
and state space, the effects of the stiff source terms on the hyperbolic structure and use that quasilinear system
to extrapolate from cell centers to faces in a Godunov method.

We first illustrate the approach for the case of a system of ODE. Consider the system of differential
equations
dY
dt
¼ BY þ CðtÞ; Y ðt0Þ ¼ Y 0; ð14Þ

Y : R! Rn; B 2 Rn�n; C : R! Rn: ð15Þ
The evolution of the rate of change of Y(t), namely dY ” Y(t) � Y0, is then described by ddY/dt =
BdY + BY0 + C(t) with dY(0) = 0. According to Duhamel’s formula
dY ðtÞ ¼
Z t

0

eðt�sÞB½BY 0 þ CðsÞ�ds: ð16Þ
When the properties of B lead to a stiff numerical problem, the exponential term in the above integral is the
one that changes most rapidly, motivating the approximation
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dY ðtÞ � IBðgÞ½BY 0 þ Cð0Þ�t; ð17Þ

where
IBðgÞ � g�1

Z g

0

esB ds; ð18Þ

dY eff

dt
¼ IBðgÞ½BY 0 þ Cð0Þ�: ð19Þ
In what follows, we will take g = O(Dt). There are two distinguished limits to the effective equation. First, if
iBgi� 1, then
IBðgÞ ¼ I þOðgÞ: ð20Þ

The second is when there is a single eigenmode of B that is stiff relative to the time scale defined by g. Spe-

cifically, we assume that for some v 2 Rn
B ¼ eB � kvvT; eBv ¼ 0; vTeB ¼ 0; ð21Þ

with
kg	 1; keBgk � 1: ð22Þ

Here k�1 is the fast time scale that is stiff relative to g. So we can write
IBðgÞ ¼ ðI � vvTÞ þO g;
1

k

� �
ð23Þ
and
IBðgÞB ¼ eB þO g;
1

k

� �
: ð24Þ
In this case, IBðgÞ projects out the stiff dynamics, leaving only processes that are resolved on the O(g)
timescale.

We can use the effective equation (19) with g = Dt to compute a first-order accurate predictor step in a sec-
ond-order accurate predictor–corrector
Y effðDtÞ ¼ Y ð0Þ þIðDtÞðBY ð0Þ þ Cð0ÞÞDt: ð25Þ

Then
Y effðDtÞ � Y ðDtÞ ¼ OðDt2Þ if ð23Þ holds;

¼ Dt2 þ Dt
k

� �
if ð24Þ holds:

ð26Þ
We apply this idea to the dynamics along Lagrangian trajectories. We define
dW ¼ W ½xðtÞ; t� � W ½xðt0Þ; t0� � W � W 0 ð27Þ

and
DdW
Dt
þ G ¼ S0 þ _S0dW ; ð28Þ

G ¼
XD

d¼1

AL
d

oW
oxd

: ð29Þ
We have linearized the source term around the value of the state at the beginning of the Lagrangian trajectory,
with _S ¼ rW � S. By applying Duhamel’s formula to Eq. (28) we obtain
dW ðtÞ ¼
Z t

t0

eðt�sÞ _S0ð�Gþ S0Þds: ð30Þ
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Following similar reasoning to the ODE case, we obtain
DW eff

Dt
þ

XD

d¼1

I _S0
ðgÞAL

d

oW
oxd

 !
¼ I _S0

ðgÞS0: ð31Þ
3.1. Characteristic analysis

We will use the quasilinear system (31) with g = Dt/2 to compute the Godunov predictor step. In the non-
stiff limit, this leads to an O(Dt2) error in the predicted values at cell faces which is sufficient for second-order
accuracy in the overall method. In order to do that, we need to analyze the hyperbolic structure of those equa-
tions. Without loss of generality in the following subsections we still consider the 1-dimensional case. Also, in
this section we will focus on the case Kq ” oK/oq = 0, Ke ” oK/oe 6¼ 0; we will discuss the more general case in
Section 5. With this choice of _S0, from Eq. (18) we obtain
I _S0
ðDt=2Þ ¼

1 0 0

0 1 0

0 0 a

0B@
1CA; ð32Þ
where
a ¼ e
1
2KeDt � 1
1
2
KeDt

; 0 < a < 1: ð33Þ
Thus, the presence of a stiff source term leads us to the transformations:
A � AL þ uI! Aeff ¼

0 q 0

1
q

op
oq

� �
e

0 1
q

op
oe

� �
q

0 a p
q 0

0BB@
1CCAþ uI: ð34Þ
3.1.1. Modified eigenvalues

Characteristic analysis of the matrix Aeff leads to the characteristic equation
detðAeff � kIÞ ¼ ðk� uÞ ðk� uÞ2 � a
p
q2

op
oe

� �
q

� op
oq

� �
e

" #
¼ 0; ð35Þ
which admits the familiar solutions
k0 ¼ u; k
 ¼ u
 a
p
q2

op
oe

� �
q

þ op
oq

� �
e

" #1
2

: ð36Þ
It appears from the above equation that the presence of the source term alters the sound speed according to
cs ¼
op
oq

� �1
2

s

! ceff ¼ a
p
q2

op
oe

� �
q

þ op
oq

� �
e

" #1
2

: ð37Þ
For a c-law equation of state we have
p ¼ ðc� 1Þqe; ð38Þ

ceff ¼ ½aðc� 1Þ þ 1� p
q

� 	1
2

: ð39Þ
Thus, in the limit of a negligible source term, a! 1, ceff! (cp/q)1/2 and the polytropic behavior is recovered.
However, in the limit of a stiff source term, a! 0, ceff! (p/q)1/2, and the isothermal regime is approached.
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This is also apparent from the expression for the rate of change of the internal energy along Lagrangian
trajectories
De
Dt
¼ �a

p
q

ou
ox
; ð40Þ
suggesting the limit, de! 0 as a! 0. Notice that in our approach we retain the polytropic form of the equa-
tion of state p = (c � 1)qe, c 6¼ 1, but we avoid differentiating it when the presence of source terms must be
taken into account. Based on Eq. (40) the pressure change is found to be
Dp
Dt
¼ c2

eff

Dq
Dt
¼ �qc2

eff

ou
ox
: ð41Þ
Finally, we note that in general, in D-dimensions, the above analysis applies unaltered to the linear operator,
Aeff

d , for each direction, d, after properly transforming u! ud, x! xd. In addition, D � 1 equations are added
describing the passive transport of momentum components perpendicular to the d direction and the eigenvalue
k0 acquires multiplicity D.

3.1.2. Modified eigenvectors

Given Eq. (41) we can now replace internal energy with pressure and find out the expression for the eigen-
vectors for the usual set of primitive variables. This reads
W ¼ ðq; u; p; sÞT; ð42Þ
where in addition to density, velocity and pressure, we have also included the specific entropy, s = pq�c (use-
ful, e.g. for the case of hypersonic flows [11]). The change in specific entropy is given by
Ds
Dt
¼ q�c Dp

Dt
� c2 Dq

Dt

� �
¼ �q1�cðc2

eff � c2Þ ou
ox
� �q1�cdc2

ou
ox
: ð43Þ
The linear operator is
Aeff ¼

0 q 0 0

0 0 q�1 0

0 qc2
eff 0 0

0 dc2q1�c 0 0

0BBB@
1CCCAþ uI: ð44Þ
The extra variable ‘s’ results in an additional eigenvalue, k = u, for the operator Aeff. The set of left and right
eigenvectors are given respectively by
l1 ¼ 0;� q
2ceff

;
1

2c2
eff

; 0

� �
; ð45Þ

l2 ¼ 1; 0;� 1

c2
eff

; 0

� �
; ð46Þ

l3 ¼ 0; 0;� dc2

qcc2
eff

; 1

� �
; ð47Þ

l4 ¼ 0;
q

2ceff

;
1

2c2
eff

; 0

� �
; ð48Þ

r1 ¼

1

� ceff

q

c2
eff

dc2q�c

0BBB@
1CCCA; r2 ¼

1

0

0

0

0BBB@
1CCCA; r3 ¼

0

0

0

1

0BBB@
1CCCA; r4 ¼

1
ceff

q

c2
eff

dc2q�c

0BBB@
1CCCA: ð49Þ
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3.2. Godunov predictor in one dimension

With the operator Aeff and the sets of left and right eigenvectors that we have worked out in the previous
section, the Godunov predictor step is carried out as usual as follows.

First the local slopes are defined. In particular at each point left and right one-sided slopes as well as cell
centered slopes are evaluated and then a final choice on the local slope DWi is defined by using van Leer lim-
iter. The upwind, time averaged left (�) and right (+) states at cell interfaces due to fluxes in the normal direc-
tion, d, are then reconstructed as:
W i;
 ¼ W n
i þ

1

2
I � Dt

Dx
Aeff

i

� �
P
ðDW iÞ; ð50Þ
where
P
ðW Þ ¼
X

kk>0

ðlk � W Þ � rk: ð51Þ
The source term component is likewise accounted for as
W i;
;d ¼ W i;
;d þ
Dt
2
I _S0
ðDt=2ÞS0: ð52Þ
The fluxes at the cell faces F iþ1
2

are computed by solving the Riemann problem with left and right states given

by (Wi,+,Wi+1,�) to obtain W
nþ1

2

iþ1
2

and computing F iþ1
2
¼ F W

nþ1
2

iþ1
2

� �
.

To modify this procedure to account for the effective dynamics, we use the characteristic analysis of the
effective dynamics to perform each of the three steps. The projection operator and any limiting in character-
istic variables is done using the eigenvectors and eigenvalues for the effective dynamics derived in Section 3.1.
Typical approximate Riemann solvers use weak-wave approximations to compute the jumps, which only
require the linearized jump relations provided by the characteristic analysis for the effective dynamics. For
the case of a polytropic gas, one can use more nonlinear approximate Riemann solvers, e.g. two shock approx-
imations, to compute the jump relations, treating 1 + a (c � 1) as an effective polytropic c. This is done for the
results presented here. Finally, any entropy fixes required to eliminate rarefaction shocks require only the
sound speed, for which we again use ceff.

3.3. Extension to more than one dimension

For directionally unsplit schemes in D dimensions an additional step is required in order to correct the time-
averaged left/right states at cell interfaces, Wi,±,d in Eq. (52), for the effects of D � 1 fluxes perpendicular to the
cell interface normal direction. Based on Eq. (31) the effect of the stiff source term would be accounted for by
carrying out for each additional direction, d, a transformation
Ad ! I _S0
ðDt=2ÞAL;d þ udI � Aeff

d ; ð53Þ
analogous to that described in Eq. (34). In the method proposed by [4,16] the corrections due to transverse
fluxes are computed according to a conservative scheme. For example in two dimensions
W i;j;
;x ¼ W i;j;
;x �
Dt

2Dy
rU W F y

i;jþ1
2

� F y
i;j�1

2

� �
; ð54Þ
where the input Wi,j,±,x is computed using a one-dimensional Godunov calculation as in the previous section,

as are the fluxes F y
i;jþ1

2

. The notation in Eq. (54) indicates that primitive variables are converted into conser-

vative variables which are then updated through conservative fluxes and then converted back into primitive
form. Thus, if we indicate with DF y

qE the undivided flux difference in the d direction for the total energy,
the above transformations imply the following correction
DF y
qE ! DF y

qE þ ða� 1Þ 1
2

pi;jþ1
2
þ pi;j�1

2

� �
uy;i;jþ1

2
� uy;i;j�1

2

� �
:
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This modification leads to a pressure change in accord to Eq. (41). Similarly, the entropy flux difference is
modified as
DF y
qs ! DF y

qs þ ða� 1Þðc� 1Þ 1
2
ðqsÞi;jþ1

2
þ ðqsÞi;j�1

2

h i
uy;i;jþ1

2
� uy;i;j�1

2

� �
:

4. Stability considerations

The method outlined above satisfies a number of conditions required for numerical stability. It is easy to see
from Eq. (40) that, as dK/de!�1, the internal energy decays rapidly to its equilibrium value and thereafter
remains constant, at that value. Inspection of the characteristic analysis shows that, in this limit, no informa-
tion is carried along the entropy wave corresponding to the eigenvalue k0. This means that the system of Eqs.
(1) effectively reduces to the equilibrium system in which the internal energy is fixed at its equilibrium value. In
addition, Eqs. (36) and (37) indicate that the so called subcharacteristic condition for the characteristic speeds
at equilibrium is always satisfied. That is
k� < keff
� < k0 < keff

þ < kþ; ð55Þ
where keff
þ;� and k+,0,� are the equilibrium and frozen eigenvalues, respectively. The above condition, while

being necessary for the stability of our linearized system [19], also guarantees that the numerical solution tends
to the solution of the equilibrium equation as the relaxation time tends to zero [3]. Since the structure of the
equations and the numerical framework, including the Riemann solver, remains basically unaltered with re-
spect to classic Godunov’s schemes except for the modification of the sound speed, one expects the usual sta-
bility analysis to apply. The latter implies the familiar CFL condition on the time step
maxðjk�jÞ
Dt
Dx
6 1; � ¼ �; 0;þ: ð56Þ
As for the step involving the source update, stability analysis for deferred correction methods of the type
adopted here was carried out through numerical experiments by Dutt et al. [5]. Minion [12] extends such con-
siderations to the case of semi-implicit schemes as the one adopted here. While the stability and convergence
properties of such schemes have not been fully elucidated analytically, the analysis of these authors suggest
that they are in general very satisfactory and competitive with commonly employed modern integration
schemes.

Here we show that, provided that the CFL condition in Eq. (56) is satisfied, our method is A-stable, in the
sense further specified below. To demonstrate this we apply the method to the following model problem [2]
dY ðtÞ
dt
¼ AY þ BY ;

Y ð0Þ ¼ 1;
where Y : R! C and A;B 2 C and represent the non-stiff and stiff part of the equation, respectively. Using the
notation
Y nþ1 ¼ P ðz1; z2ÞY n;
where P(z1,z2) is the operator corresponding to the proposed method, z1 = ADt, z2 = BDt, the stability region
of the method, P, is defined as the region SP ¼ fz1; z2 2 C :j P ðz1; z2Þ j< 1g. A method, P, is A-stable if SP in-
cludes the plane C� � fz 2 C : RðzÞ < 0g. Inspection of Eqs. (9)–(12) and simple algebraic manipulation lead
to the expression
P ðz1; z2Þ ¼ ½1þ P hðz1Þ�
1� 3

2
z2

ð1� z2Þ2
þ

z2

2

1� z2

; ð57Þ
where Ph is the hydrodynamic operator given by Godunov’s method. Using the CFL conditions, which en-
sures jP(z1,0)j = j1 + Ph(z1)j < 1, we find:
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jP ðz1; z2Þj2 <
1� z2 �

z2
2

2




 



ð1� z2Þ4

< 1 8z2 : Rðz2Þ < 0: ð58Þ
5. Extension to the case Kq 6¼ 0

When the source term depends on both the internal energy and the gas density, Kq 6¼ 0 and we obtain
I _S0
ðDtÞ ¼

1 0 0

0 1 0

ða� 1Þ Kq

Ke
0 a

0B@
1CA; ð59Þ
with a defined in Eq. (33). As a result
Aeff ¼

0 q 0

1
q

op
oq

� �
e

0 1
q

op
oe

� �
q

0 ða� 1Þ Kq

Ke
qþ a p

q 0

0BB@
1CCAþ uI ð60Þ
and the sound speed is now given by
ceff ¼ ða� 1ÞKq

Ke
qþ a

p
q

� �
1

q
op
oe

� �
q

þ op
oq

� �
e

( )1
2

: ð61Þ
Since a < 1 the term in squared brackets can become negative and the sound speed imaginary. This behavior is
related to the fact that when Kq 6¼ 0 the gas is prone to thermal instability so that the scheme cannot be simply
generalized without taking into account the specific properties of the source term. In general one cannot expect
an implicit method to work properly except in the case of a system with a stable solution. For a c-law equation
of state, Eq. (38), c2

eff > 0 requires
e
q

Ke

Kq
>

1� a
aðc� 1Þ ; ð62Þ
which is reminiscent of the thermal stability criterion [6], in which case the term on the right-hand-side is 1. In
both the stiff limit and non-stiff limits the RHS in Eq. (62) is of order �KeDt	 1, indicating the potential for
triggering thermal instability of ‘numerical nature’. For example, consider a source of the form
Kðq; eÞ ¼ qn ~Kðq; eÞ, so that
Kqðq; eÞ ¼ nq�1Kðq; eÞ þ qn ~Kqðq; eÞ: ð63Þ

In general the former term can take both positive and negative values. So even though it vanishes at equi-

librium, its effect is destabilizing and should be resolved in time. Depending on the definition of K, it is possible
that ~Kq P 0. Only in this case is the latter term stabilizing and should contribute to the sound speed in Eq. (61).

So our approach is to decouple any destabilizing component of Kq, which we indicate with Kq,<, from the
characteristic analysis and associate it explicitly with the source term so that its effect does not enter the sound
speed. In this case one would have to add a term
Dp ¼ qDe ¼ �ða� 1ÞKq;<

Ke
q2ðr � uÞDt

2
; ð64Þ
to the pressure component of the right hand side of Eq. (52). In order to preserve second-order accuracy, one
would require that the above term is resolved in time, i.e. the time step is sufficiently small that De < e. The
restriction placed by Eq. (52) depends on the shape of the source function. However, near equilibrium it does
not play any role because by definition to zeroth order the source term is zero. In fact we find that in all test
cases with a density dependent source explored below, including the one in Section 6.3, the condition (52)
never constrained the time step.
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6. Tests

In this section we test the performance of the proposed method in terms of both accuracy and robustness.
As for the accuracy we consider a set of one-dimensional problems for which the analytic solution is known.
In particular, we use the test problems in [14] for an isothermal rarefaction fan and an isothermal shock wave
and consider a flow with a stiff relaxation term in the limit in which the relaxation time approaches zero. We
then consider the case of a sinusoidal perturbation with wave-vector both parallel (1-D) and skew (2-D) with
respect to the x-axis, and prove the second-order accuracy of the scheme for a variety of stiffness conditions.
This we show both for the case in which the source term does or does not depend on density. As for the robust-
ness of the method, we turn to multidimensional problems involving strong shocks and large spatial gradients.
In particular we consider the interaction of a strong shock with a spherical cloud, again assuming a variety of
stiffness conditions. The aim of the tests is to prove the code performance in the case of complex and compu-
tationally more challenging calculations.

As for the source term, in the following we mostly present results based on a relaxation law of the form
K ¼ �Kqf e� e0
q
q0

� �g� �
; ð65Þ
where K is the heat transfer coefficient and the internal energy, e, is related to pressure and density by the equa-
tion of state (38), and f and g are parameters. When f = g = 0 the relaxation law expressed by Eq. (65) reduces
to the case studied in [14] and in the limit K!1 it enforces isothermality.

We test the case of a density dependent source term, by setting either f or g, or both parameters, to a non-
zero value. Only the latter case is reported here although in all cases we obtain consistent results in terms of
convergence and accuracy. When g 6¼ 0, Eq. (65) forces the system towards an equilibrium configuration
described by polytropic-like equation of state in which e = e0(q/q0)g. Thus, when g > 0, Eq. (61) implies an
effective adiabatic index that, as it should be, tends to (1 + g), as a! 0.

6.1. Riemann problems

We first consider one-dimensional Riemann problems described by the following initial conditions:
ðq; u; pÞ½x; t ¼ 0� ¼
ðql; ul; plÞ if x 6 0:5

ðqr; ur; prÞ if x > 0:5

�
ð66Þ
and with a source term described by Eq. (65). Following [14] we adopt
K ¼ 108; ð67Þ

e0 ¼
pl;r

ql;rðc� 1Þ ¼ 1; ð68Þ

c ¼ 1:4; ð69Þ
Dx ¼ 2:5� 10�3: ð70Þ
The stiff nature of the problem is apparent as K�1� Dx /ceff, i.e. the relaxation time is much shorter than
the hydrodynamic time scale.

6.1.1. Isothermal rarefaction

We begin by setting the state variables to the values
ql ¼ 1:0; pl ¼ 0:4; ul ¼ �0:8;

qr ¼ 2:5; pr ¼ 1:0; ur ¼ ul þ 0:5795;
ð71Þ
representing an isothermal rarefaction in the k+ characteristic family. For the calculation we employ a grid
with Ncell = 400 grid cells [14]. The results from the code (open dots) are illustrated together with the analytic
solution (solid line) in Fig. 1. From top to bottom the plot shows the density, velocity and pressure solutions at



Fig. 1. Isothermal rarefaction wave. From top to bottom: density, velocity and pressure solutions, respectively. Open dots and solid line
indicate the numerical and analytic solution, respectively. The initial conditions are given in Eq. (71) with ul = �0.8. A mesh size
Dx = 2.5 · 10�3 was employed.
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time t = 0.4, respectively (the same time as in [14]). The solutions are free of numerical artifact and well repro-
duce the analytic solution. In particular both the foot and the front edge of the rarefaction wave are accurately
reproduced as sharp features. In addition, there is no numerical ‘kink’ along the wave in correspondence of the
sonic point, that is the eigenvalues k+ = u + ceff changes sign1 as it was noticed in the ‘non-stiff’ schemes pre-
sented for comparison in [14]. If we estimate the error in the numerical solution as in [14]
1 Th
e ¼ 1

N cell

XN

i¼1

qn
i � qiso xiþ1

2
; tn

� �


 


; ð72Þ
that is the average of the absolute value of the difference between the numerical and analytic result, we find
that the error is eq = 4.2 · 10�4 for the density and eu = 1.5 · 10�4 for the velocity. The latter is a factor almost
20 smaller than obtained with the ‘frozen method’ proposed in [14], most likely owing to the sharper resolution
of our method at the rarefaction front and foot. This is visible from comparing the analytic and numerical
solutions in Fig. 1. It is also consistent with the L1 norm of the errors (see Eq. (79) in Section 6.2), which
gives ieui1 = 7.3 · 10�3 and i eqi1 = 1.6 · 10�2, indicating a localized error as opposed to one that is uni-
formly distributed.

6.1.2. Shocks
Next we study the case of an isothermal shock with initial conditions
qr ¼ 1:0; pr ¼ 0:4; ur ¼ ur;

ql ¼ 2:5; pl ¼ 1:0; ul ¼ ur þ 0:6:
ð73Þ
The numerical results (solid dots) are shown together with the analytic solution (solid line) in Fig. 2 for two
different values of ur, namely �1.2 (top left) �0.3 (top right) producing isothermal shock fronts slowly moving
to the left and the right, respectively. Neither artificial viscosity nor flattening was employed and Van Leer’s
limiter was used. Overall the algorithm performs very well. The shock positions accord with the analytic value.
The shocks are well captured within a couple of zones, indicating that the properties of the scheme have not
degraded with respect to the non-stiff case. We notice that minor oscillations appear in a few zones down-
is occurs as the effective sound speed is ceff . 0.63 and ul varies from �0.8 to �0.2205.
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stream the left moving shock front. These have not been introduced by our method for treating the stiff source,
but rather are due to the fact that the dissipation in a Godunov method vanishes for slowly-moving shocks,
such as the one being computed here. A thorough discussion on this is found in [20]. In particular, we find that
the same oscillations appear in the purely hydrodynamic version of the algorithm with the relaxation term
turned off, if we use an adiabatic index 0 < c � 1� 1 in order to mimic isothermality.

Finally, in the bottom right panel the same initial conditions as in the top right panel are used but in
combination with a much smaller heat transfer coefficient, K = 500 (bottom left) and K = 50 (bottom right).
In these cases K�1

6 Dx/ceff and K�1 P Dx/ceff, respectively, so that while the gas behavior is not strictly
Fig. 2. Top panels: slow left-moving (left panel) and right-moving (right panel) isothermal shock waves. In each panel, from top to
bottom: density, velocity and pressure solutions, respectively. Filled dots and solid line indicate the numerical and analytic solution,
respectively. The initial conditions are given in Eq. (73) with ur = �1.2 (top left) and ur = �0.3 (top right). Bottom: slow right-moving
quasi-isothermal shocks. In both cases we set ur = �0.3 and use a heat transfer coefficient K = 500 (bottom left) and K = 50 (bottom right)
respectively. The solid line in the bottom right panel corresponds to a solution obtained with a much higher resolution run using
Dx = 8.3 · 10�5 so that the reaction time is resolved. In all other cases a mesh size Dx = 2.5 · 10�3 was employed.
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isothermal, the relaxation time is still relatively short. Assessing the algorithm performance for this situation is
of relevance as well, as in general stiffness of the conditions will vary across a flow. The bottom panels of
Fig. 2, in addition to density, velocity and pressure also present results for the temperature. As it appears from
this plot, the numerical solution is very satisfactory, without numerical artifacts or oscillations. For the case
K = 50, we take the test one step further and compare the result obtained using the current grid settings (solid
dots), that is Ncell = 400, Dx = 2.5 · 10�3, with those from a much higher resolution run (solid line) in which
Ncell = 12,000, Dx = 8.33 · 10�5, so that the reaction time is fully resolved. This comparison nicely shows that
our modified scheme is able to capture the correct behavior of the flow even at intermediate stiffness conditions
away from a purely isothermal behavior.

6.2. Convergence rates in smooth flows

In this section we test the convergence of the method by studying the case of a smooth flow with the fol-
lowing initial conditions:
Table
Run se

Run

A
B
C
D
E
F
G
H
I
L

q ¼ q0 þ
A
2
½cosð2pk � rÞ þ 1�; ð74Þ

p ¼ p0 ¼ 0:5; ð75Þ
ux ¼ ux0 ¼ 0:3; ð76Þ
uy ¼ uy0 ¼ 0:5; ð77Þ
where r is the position vector and we use q0 = c = 1.4. The above initial conditions produce a sinusoidal wave
with amplitude A propagating in the domain along the direction defined by the vector k. While we have exper-
imented with various values for the parameters A, k and K, below we present results for a few cases only, sum-
marized in Table 1.

In particular we consider a perturbation amplitude A = 10�2 and both a wave-vector aligned with the grid
k = (1, 0) and skew with respect to it, k ¼ ð2=

ffiffiffi
5
p

; 1=
ffiffiffi
5
p
Þ. We adopt a source term as given in Eq. (65) with

values of the transfer coefficient K = 1, 50, 108 to explore different regimes in which the relaxation is resolved
in time, is stiff as well as the intermediate regime (cases A–F). We then repeat case C and F but with the initial
value of the internal energy offset from the equilibrium value by de/e0 = 40% (cases G–H). Finally, we consider
the case in which the source term depends both on density and internal energy, as described by Eq. (65). In
particular, we show results concerning the case in which K = 108, f = 1, g = 0.1, de/e0 = 40% (cases I–L). Con-
sistent test results were also found by setting f = 1, g = 0 as well as f = 0, g = 0.1.

In order to measure the rate at which the numerical solution converges, for each problem we carry out a set
of 5 simulation runs employing Ncell = 32, 64, 128, 256, 512 for a total range of 32. Note that the stiffness con-
ditions do not change significantly as the grid is refined within the range of resolutions considered here. Also,
the smallness of the perturbations is such that the term given by Eq. (64), to be added to the energy in the
predictor step, is resolved in time.
1
t for convergence study with relaxation law equation (65)

A k K f g Note

10�2 (1,0) K = 1 0 0
10�2 (1,0) K = 50 0 0
10�2 (1,0) K = 108 0 0
10�2 ð2=

ffiffiffi
5
p

; 1=
ffiffiffi
5
p
Þ K = 1 0 0

10�2 ð2=
ffiffiffi
5
p

; 1=
ffiffiffi
5
p
Þ K = 50 0 0

10�2 ð2=
ffiffiffi
5
p

; 1=
ffiffiffi
5
p
Þ K = 108 0 0

10�2 (1,0) K = 108 0 0 de/e0 = 0.4
10�2 ð2=

ffiffiffi
5
p

; 1=
ffiffiffi
5
p
Þ K = 108 0 0 de/e0 = 0.4

10�2 (1,0) K = 108 1 0.1 de/e0 = 0.4
10�2 ð2=

ffiffiffi
5
p

; 1=
ffiffiffi
5
p
Þ K = 108 1 0.1 de/e0 = 0.4
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The convergence rate is measured using Richardson extrapolation. Given the numerical result qr at a given
resolution r we first estimate the error at a given point (i, j), as
Table
Conve

Ncell

K = 1
32
64

128
256

K = 50
32
64

128
256

K = 10
32
64

128
256

a R1
er;i;j ¼ qrði; jÞ � �qrþ1ði; jÞ; ð78Þ

where �qrþ1 is the solution at the next finer resolution, properly spatially averaged onto the coarser grid. We
then take the n-norm of the error
Ln ¼ kerkn ¼
X
jer;i;jjnvi;j

� �1=n
; ð79Þ
where, vi,j = Dx2 is the cell volume, and estimate the convergence rate as
Rn ¼
lnðLnðerÞ=LnðesÞÞ

lnðDxr=DxsÞ
: ð80Þ
For each studied case listed in Table 1, we produce a corresponding Tables 2–5 reporting the L1, L2 and L1
norms of the error as defined above. Inspection of their values shows that the error drops with second-order
accuracy, supporting our analysis in Section 2.

A final experiment is designed to further prove that in the stiff limit (K = 108) the proposed scheme con-
verges to the correct asymptotic (isothermal) behavior. To do that we employ a Godunov method for the iso-
thermal fluid equations and run again case C in Table 1. A comparison of the solutions obtained with the
isothermal code and our proposed method is reported in Table 6. It shows that the difference between the
two is always negligible with respect to the estimated truncation error, thus validating our convergence study.

6.3. Adaptive mesh refinement and strong shock problems

In applications involving the interaction of strong shocks, it is useful to use the dissipation mechanisms
described in [4], which generalize without modification to the present case. In addition, it is also desirable
to couple this method to a block-structured adaptive mesh refinement (AMR) [1,10]. In AMR calculations,
the conservative variables are updated for the conservative fluxes in two steps. The first step constitutes the
main flux update and it simply consists in modifying the state variables U for the total fluxes across the cell
boundaries. In addition, as part of the operations of synchronization among different levels, the conservative
variables at the coarse-fine grid interfaces are further updated for the flux difference between the level on which
2
rgence rates: 1-D case: A = 10�2, k = (1,0)

Density Momentum

L1 L2 L1 R1
a L1 L2 L1 R1

a

4.3E�7 9.5E�7 2.8E�6 – 6.3E�7 1.4E�7 4.0E�6 –
1.1E�7 2.4E�7 7.0E�7 2.0 1.3E�7 2.8E�7 8.0E�7 2.3
2.7E�8 6.0E�8 1.8E�7 2.0 2.8E�8 6.3E�8 1.8E�7 2.2
6.8E�9 1.5E�8 4.4E�8 2.0 6.7E�9 1.5E�8 4.2E�8 2.1

4.0E�7 8.8E�7 2.6E�6 – 7.8E�7 1.7E�6 4.9E�6 –
1.1E�7 2.5E�7 7.2E�7 1.9 1.5E�7 3.2E�7 9.2E�7 2.4
3.1E�8 6.9E�8 2.0E�7 1.8 2.9E�8 6.5E�8 1.8E�8 2.4
8.5E�9 1.9E�8 5.4E�8 1.9 6.2E�9 1.4E�8 3.9E�8 2.2

8

4.1E�7 9.2E�7 2.7E�6 – 8.2E�7 1.8E�6 5.91-6 –
9.7E�8 2.1E�7 6.4E�7 2.1 1.6E�7 3.6E�7 1.0E�6 2.4
2.3E�8 5.2E�8 1.5E�7 2.1 3.6E�8 8.0E�8 2.3E�7 2.1
5.7E�9 1.3E�8 3.8E�8 2.0 8.5E�9 1.9E�8 5.4E�8 2.1

is the convergence rate based on the L1 errors.



Table 3
Convergence rates: 2-D case: A ¼ 10�2; k ¼ ð2=

ffiffiffi
5
p

; 1=
ffiffiffi
5
p
Þ

Ncell Density Momentum

L1 L2 L1 R1
a L1 L2 L1 R1

a

K = 1
32 3.2E�5 3.5E�5 5.3E�5 – 4.3E�5 4.8E�5 7.0E�5 –
64 8.6E�6 9.5E�6 1.4E�5 1.9 9.8E�6 1.1E�5 1.6E�5 2.1

128 2.2E�6 2.5E�6 3.6E�6 2.0 2.3E�6 2.6E�6 3.8E�6 2.1
256 5.7E�7 6.4E�7 9.2E�7 2.0 5.7E�7 6.3E�7 9.1E�7 2.0

K = 50
32 6.2E�5 7.0E�5 1.0E�5 – 3.6E�5 4.0E�5 5.9E�5 –
64 1.2E�5 1.4E�5 2.0E�5 2.4 7.9E�6 8.8E�6 1.3E�5 2.4

128 2.7E�6 3.0E�6 4.3E�6 2.2 1.8E�6 1.9E�6 2.8E�6 2.1
256 6.2E�7 6.9E�7 1.0E�6 2.1 4.0E�7 4.5E�7 6.5E�6 2.2

K = 108

32 7.4E�5 8.2E�5 1.2E�4 – 4.5E�5 5.0E�5 7.3E�5 –
64 1.6E�5 1.8E�5 2.6E�5 2.2 1.0E�5 1.1E�5 1.7E�5 2.2

128 3.8E�6 4.2E�6 6.1E�6 2.1 2.5E�6 2.8E�6 4.1E�6 2.0
256 9.4E�7 1.0E�6 1.5E�6 2.0 6.2E�7 6.9E�7 9.9E�6 2.0

a R1 is the convergence rate based on the L1 errors.

Table 4
Convergence rates: off equilibrium case: de/e0 = 0.4, A = 10�2, K = 108

Ncell Density Momentum

L1 L2 L1 R1
a L1 L2 L1 R1

a

k = (1,0)
32 4.8E�7 1.1E�6 3.1E�6 – 7.6E�6 1.7E�6 4.8E�6 –
64 1.0E�7 2.3E�7 6.9E�7 2.2 1.5E�7 3.3E�7 9.5E�6 2.3

128 2.4E�8 5.4E�8 1.6E�7 2.1 3.3E�8 7.3E�7 2.1E�7 2.2
256 5.9E�8 1.3E�8 3.9E�7 2.0 7.7E�9 1.7E�8 5.9E�8 2.1

k ¼ ð2=
ffiffiffi
5
p

; 1=
ffiffiffi
5
p
Þ

32 7.4E�5 8.2E�5 1.2E�4 – 4.4E�5 4.9E�5 7.2E�5 –
64 1.6E�5 1.8E�6 1.7E�5 2.2 1.0E�5 1.1E�5 1.7E�5 2.1

128 3.8E�6 4.2E�6 6.2E�6 2.1 2.5E�6 2.8E�6 4.0E�6 2.0
256 9.4E�7 1.0E�6 1.5E�6 2.0 6.1E�7 6.8E�7 9.9E�7 2.0

a R1 is the convergence rate based on the L1 errors.

Table 5
Convergence rates: off equilibrium, q-dependent source case: de/e0 = 0.4, f = 1, g = 0.1, A = 10�2, K = 108

Ncell Density Momentum

L1 L2 L1 R1
a L1 L2 L1 R1

a

k = (1,0)
32 2.6E�7 5.7E�7 1.8E�6 – 9.0E�7 2.0E�6 5.7E�6 –
64 6.1E�8 1.4E�7 4.2E�7 2.1 1.9E�7 4.1E�7 1.2E�6 2.2

128 1.5E�8 3.3E�8 1.0E�7 2.0 4.2E�8 9.3E�8 2.7E�7 2.2
256 3.5E�9 7.7E�9 2.4E�8 2.1 1.0E�8 2.2E�8 6.5E�8 2.1

k ¼ ð2=
ffiffiffi
5
p

; 1=
ffiffiffi
5
p
Þ

32 6.6E�5 7.4E�5 1.1E�4 – 5.1E�5 5.7E�5 8.3E�5 –
64 1.5E�5 1.7E�5 2.5E�5 2.1 1.2E�5 1.3E�5 1.9E�5 2.1

128 3.7E�6 4.1E�6 5.9E�6 2.0 2.8E�6 3.1E�6 4.6E�6 2.1
256 9.1E�7 1.0E�6 1.5E�6 2.0 7.0E�7 7.7E�7 1.1E�6 2.0

a R1 is the convergence rate based on the L1 errors.
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Table 6
Comparison with a purely isothermal solution: A = 10�2, k = (1,0)

Ncell Density Momentum

L1 L2 L1 L1 L2 L1

32 2.7E�11 6.0E�11 1.7E�10 1.8E�10 4.0E�11 1.1E�10
128 2.7E�11 6.1E�11 1.7E�10 1.8E�10 4.0E�11 1.1E�10
256 2.7E�11 6.1E�11 1.7E�10 1.8E�10 4.0E�11 1.1E�10
512 2.7E�11 6.1E�11 1.7E�10 1.8E�10 4.0E�11 1.1E�10
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they are defined and the next finer level. This operation is referred to as refluxing and it is aimed at preserving
the conservative character of the numerical scheme when applied to a hierarchy of nested grids.

For the purpose of the current discussion, the effect of this operation can be expressed as
Fig. 3.
The le
time is
256 · 2
U ! U � Dt
Dx

dF ; ð81Þ
where dF is the difference between the fluxes at the coarse-fine interface computed on a given level and the next
finer level. In AMR calculations refluxing on a given level is enforced as a separate operation, after the source
update and the main flux update have been carried out on that level and also on all finer levels. Therefore, an
additional measure must be taken to ensure that the effects of refluxing are also subjected to the action of the
deferred corrections (just like the flux update does). Thus, inspection of Eqs. (9)–(11) indicates that the flux
correction must be modified according to
dF ! fðI� DtrU SjU0
Þ�1 þ ðI� DtrU SjeU Þ�1½I� ðI� DtrU SjU0

Þ�1�gdF : ð82Þ
In the following we employ an AMR code and carry out a calculation involving the interaction of a spher-
ical overdense region with a strong hydrodynamic shock to assess the robustness of our proposed numerical
method. We assume a cloud overdensity with respect to the ambient medium v = 10 and a shock Mach num-
ber M ¼ 10. We use a base grid of 256 · 256 zones and allow for two additional levels of refinement with
refinement ratio 2 in regions where the undivided, relative density gradients, Dq/q, exceed 20%.

We begin assuming that a stiff relaxation term of the form in Eq. (65) acts on the flow internal energy and
we consider both the case of a exceedingly large transfer coefficient, K = 108, as well as the case in which the
relaxation time is comparable to the shock cell crossing time. This requires, roughly, that
Logarithmic pressure maps from the shock–cloud interaction run. The shock Mach number is 10 and the cloud overdensity is 10.
ft panel shows the ‘isothermal’ case with K = 108 and the right panel shows the case in which K�1 . Dx/vshock, i.e. the relaxation
comparable to the shock cell crossing time. These calculations were performed with an AMR code which employed a base grid of
56 zones and two additional levels of refinement with refinement ratio 2.



Fig. 4.
t = 0.0
was pe

536 F. Miniati, P. Colella / Journal of Computational Physics 224 (2007) 519–538
K�1 ’ Dx=ushock; ð83Þ

where Dx is the mesh size and ushock is the shock speed. Note that the stiffness is sufficiently large that refining
by a factor of 2 or 4 does not make the problem significantly less stiff. At simulation start the temperature is
constant throughout the domain, so that the cloud is in thermal equilibrium but it has higher pressure than its
surroundings. As a result, it expands sonically into the background. The shock propagates from the right to
the left along the x-axis and as it runs into the cloud it crushes it. In Fig. 3 we plot the logarithmic pressure
map as the shock is roughly half-way through the cloud. The high pressure postshock region is clearly thinner
in the case of the larger value of K, and the shock has also propagated slightly further down the axis. In both
cases, and independently of the magnitude of the transfer coefficient, however, the result is sound and shows
no sign of numerical artifact both in the presence of strong shock and large gradients.

As a final test, we consider the same shock cloud interaction problem as described above but with a source
function appropriate for a mixture of hydrogen (76%) and helium (24%) illuminated by a uniform ionizing
Logarithmic density (left) and pressure (right) maps from the shock–cloud interaction run for a density dependent source term at
18 (top) and t = 0.07 (bottom) time units. As before, the shock Mach number is 10, the cloud overdensity is 10 and the calculation
rformed with an AMR code employing a base grid of 256 · 256 zones and two additional levels of refinement with refinement ratio 2.
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background radiation field. The cooling part of the source function is proportional to the density and the equi-
librium temperature, of order 104 K, depends slightly on the density. This function has a very strong temper-
ature gradient about the equilibrium value, behaving analogously to the stiff source terms used in the previous
sections where accuracy and convergence studies were carried out.

We set the background gas temperature to 106 K and its number density to 0.1 cm�3. The gas is collisionally
ionized, its sound speed is of order 1.2 · 107 cm s�1 and it has a cooling time scool = P/(c � 1)qK . 1.4 · 107 yr.
With a box size L = 1.7 kpc = 5.2 · 1021 cm, the latter is much longer than the CFL time, sCFL 6 Dx/ushock .
5.4 · 103 yr. The cloud of gas is in pressure equilibrium with a density contrast v = 10 so that its temperature is
105 K. When unperturbed, the cloud’s gas cooling time is about 1.4 · 104 yr . 2.6 · sCFL. A background radi-
ation field, producing about C � 2.4 · 10�12 s�1 ionizations of neutral atoms of hydrogen and helium keeps the
cloud’s temperature at the equilibrium value of�1.5 · 104 K. However, the cloud’s pressure quickly falls below
the background value and, as a minor effect, the cloud slowly contracts.

Fig. 4, shows a snapshot of the density (left) and the pressure (right) during the initial (top) and final stages
(bottom) of the simulation. The reverse shock is non-radiative, thus extending further ahead of the cloud than
in the previous cases in Fig. 3. Inside the cloud strong radiative losses prevent the full temperature rise in the
postshock region and produce a density jump substantially larger than in the corresponding adiabatic case.
The bottom panel shows the later stages of the cloud evolution, when Rayleigh–Taylor instability with scales
comparable to the cloud size have developed and are shredding the cloud. As in the previous case, in which the
source term is described by a relaxation law, the code appears to produce reliable numerical results, without
numerical artifact despite the presence of strong shock and large gradients.

7. Conclusions

We have presented a second-order accurate semi-implicit predictor–corrector scheme to treat stiff source
terms within the framework of higher order Godunov’s methods. Our treatment of the predictor step for com-
puting the hyperbolic fluxes, is based on the derivation of a local effective dynamics using Duhamel’s formula.
This leads to a conventional second-order Godunov method when the system relaxation time is larger than the
time step and to a second-order Godunov method for the isothermal equations in the limit of a stiff source
term. Finally, we obtain a semi-implicit corrector using a one-step second-order accurate deferred corrections
method as suggested in [5,12].

Our tests indicate that the proposed method is stable and robust and its second-order accuracy preserved
across a variety of stiffness conditions. We have also discussed the case of a general source term which depends
both on e and q and shown that the method is applicable provided that the flow is thermally stable or the non-
stiff part of the source term is resolved in time.

The additional cost involved in the formulation of our scheme is minimal; all it requires is an estimate of the
term Ke which in a purely relaxation case is trivial and for a more complicated source term (such as the case of
radiative losses) is still minor compared to the estimate of the source term itself. In our implementation the
factor a(c � 1) + 1 is stored as an additional primitive variable and used as polytropic index in the character-
istic analysis instead of c.
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